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ABSTRACT 

 

The Wavelet Domain (WD) Automatic Modulation 

Recognition (AMR) process described in this paper involves 

the use of unique features templates that represent digital 

communications signal features that are characteristic of the 

transitions contained in a stream of data symbols. Such data 

transitions are indicated by a change in the amplitude, 

frequency, and/or phase of a digitally modulated signal. It is 

shown in this paper that a set of WD templates, based on the 

Discrete Wavelet Transform (DWT), is suitable for the blind 

identification of binary digitally modulated communications 

signals acquired by a communications receiver.  

The specific binary modulation schemes considered in 

this work include BASK, BFSK, and BPSK. The wavelet 

used for both template construction and the decomposition 

of received signals is the Daubechies 1 (Haar) wavelet. It 

has been determined via extensive computer simulations that 

the rate of correct classification for BASK signals is 100% 

over the range of SNR values considered, that is from -5 dB 

to 10 dB. The rates of correct classification for BPSK 

signals are 100%, 96.8%, 95.6% and 94.8% for SNR = 10 

dB, 5 dB, 0 dB and -5 dB, respectively. The rates of correct 

classification for BFSK signals are 98.0%, 96.2%, 100.0% 

and 97.0% for SNR = 10 dB, 5 dB, 0 dB and -5 dB, 

respectively. The AMR process presented in this study 

generally produces higher rates of correct classification than 

other AMR techniques that have been reported in the 

literature. This observation is especially significant when 

considering the cases of BASK and BPSK for systems 

operating at an SNR value of -5 dB. 

 

1. INTRODUCTION 

 

AMR can be described as blind identification of the 

modulation scheme used to format digital data embedded in 

a received signal. In a radio receiver system, AMR can be 

used as the intermediate step between signal reception and 

signal demodulation to recognize the unknown modulation 

scheme. More significantly, AMR plays an important role in 

the development of agile radio receivers for both civilian 

and military applications, such as electronic warfare, 

electronic surveillance systems, spectrum management and 

threat analysis [1]. 

 The broader topic of AMR has been explored using 

either of two main approaches. These are (a) decision-

theoretic approaches which employ hypothesis testing on the 

basis of specific signal parameters to achieve modulation 

classification [2], [3], and (b) pattern recognition-based 

approaches that utilize features extracted from the received 

signal to implement the classifiers at the core of the AMR 

process. Regardless of the technique used, the process of 

automatic classification is extremely challenging since there 

is very often little, or no, a priori information about either 

the signals, or other relevant parameters required by the 

receiver. 

In this study, pattern recognition methods in 

conjunction with DWT-based techniques are systematically 

explored use in the automatic recognition of digitally 

modulated signals transmitted over an AWGN channel. 

Some previous WD-based AMR studies that have been 

reported in the literature have used both the Continuous 

Wavelet Transform (CWT) and the Discrete Wavelet 

Transform (DWT) [4]-[7]. Most of these studies have 

involved computing histograms of the CWT and/or DWT 

wavelet coefficients of the received signals. Based on the 

characteristic number of peaks contained in the histograms, 

different types of digitally modulated signals can be 

identified [4], [5], [8], [9]. The communications signals 

considered in those studies are M-ary PSK and M-ary FSK 

[5]; Quadrature Phase Shift Keying (QPSK) and Gaussian 

Minimum Shift Keying (GMSK) signals [10]; as well as M-

ary QAM and M-ary ASK signals [11]. The wavelets used in 

these studies have been largely focused on the Haar, 

although the Daubechies wavelet family has also been used 

in some cases.  

The DWT-based AMR method described in this paper 

employs the concept of template matching to achieve 

modulation identification prior to signal demodulation over 

a wide range of practical SNR values. Specifically, noise-

free wavelet-domain templates containing the distinguishing 

features of each modulation type are constructed. The DWT 

is also used to extract the WD coefficients of received 

signals that have been corrupted with AWGN. In developing 
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the AMR process an initialization step is invoked.  At the 

outset, WD templates are stored within the receiver 

possessing unique features associated with the three 

modulation types. In this study, the templates are determined 

based upon the Haar wavelet. The AMR process consists of 

two main steps. First, a received signal that has been 

corrupted with AWGN is transformed into the wavelet-

domain via the DWT using the Haar wavelet. The resulting 

wavelet-domain signal is then cross-correlated with the pre-

defined templates corresponding to all three types of binary 

modulation schemes. The modulation type that is declared to 

be operative at the receiver input is determined on the basis 

of decision logic that employs a majority vote strategy.  

 The remainder of this paper consists of five sections. A 

brief primer on the DWT, along with the signal models used, 

is provided in Section II. The binary modulation 

classification algorithm is described in Section III. In 

Section IV, the simulation setup is described and the results 

of the simulation experiments are given. These results are 

compared with representative results from the existing 

literature in Section V, Conclusions of this study are 

presented in Section VI, and finally Section VII describes 

Future Work. 

 

2. THEORETICAL BACKGROUND 

 

2.1 Signal definition [12]:  
 

The BASK signals used in this study are defined as 
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where 1,2i  . The two amplitudes A1 and A2 are constants, 

which denote the binary symbols 1 and 0, respectively. The 

parameter Eb denotes the energy per bit, Tb denotes the 

temporal duration of the bit, and the carrier frequency is 

denoted by fc. 

The BFSK signals used are defined by  
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where 1i   and 2i   correspond to the binary symbols 1 

and 0, respectively. 

The BPSK signals are defined as 
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            (3) 
where, again, 1i  and 2i   correspond to the binary 

symbols 1 and 0, respectively. 

2.2 Multiresolution Analysis (MRA) and the Discrete 

Wavelet Transform  

 

Wavelets can be generally viewed as rapidly decaying 

oscillatory functions that may be used as basis functions to 

represent signals. They are especially useful in representing 

all types of signals that appear in practice that have 

characteristics such as periodicities and/or jump 

discontinuities. The DWT is any wavelet transform in which 

the wavelet functions are discretely sampled. It is often 

conveniently described in terms of the filter-theoretic 

approach of Multiresolution Analysis (MRA).  

MRA is a digital signal processing technique based on 

the use of orthonormal wavelet bases for signal analysis [13], 

[14]. In this technique, a sampled signal is passed through a 

series of Finite Impulse Response (FIR) filters in the manner 

depicted in Fig. 1. 
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Fig. 1. A three-level filter bank illustrative of the MRA process. 

 

 

The impulse responses of low-pass and high-pass filters 

are denoted by g[n] and h[n], respectively. The output of the 

high-pass filters provides the detail coefficients,
,k jd  , and 

the output of the low-pass filters provide the approximation 

coefficients, 
,k jc . With the requirement that the input signal 

be represented by 2n  samples, the output of each filter is 

down-sampled by a factor of 2 and the process is continued 

for as many user-defined levels as desired to obtain the 

required decomposition of the original signal. In order to use 

the MRA method to implement the DWT a scaling 

function,  t , is defined as [15] 
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where, 1N   is the order of the filter and m  indexes into 

the set of filter coefficients under consideration. The mother 

wavelet,  t , can then be described in terms of the scaling 

function, and the filter coefficients according to 
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In this MRA approach of implementing the DWT both 

the detail and approximation coefficients of an input signal 

can be computed at different levels of resolution, as 

illustrated in Fig. 1. Practically, the DWT can be used for 

the compression of data prior to transmission through a 

noisy channel, for the de-noising of signals acquired by a 

communications receiver, reconstruction of time-domain 

signals described in the wavelet-domain, among others [16]. 

It is used here for the characterization, i.e., analysis of 

signals. By identifying the changes in the wavelet 

coefficients obtained from different scales and translations 

of a communications signal, the characteristic amplitude, 

phase and frequency fluctuations inherent within a 

communications signal corresponding to information data 

symbols can be recognized.  

 In summary, a signal can be represented by wavelet 

coefficients at different levels of resolution, and thereby 

preserve the important data transition pattern content of the 

signal. The wavelet transform is particularly useful for 

capturing the jump discontinuities which often occur in 

digitally modulated communications signals.  

2.3 Wavelet-Domain Cross-Correlation Operation 

 

In this section the concept of the cross-correlation operation 

in the wavelet-domain is described. The WD AMR process 

developed in this work uses WD cross-correlation values in 

several decision making algorithms. In the time-domain, the 

cross-correlation of two functions x(t) and y(t) is described 

as [17] 

     *
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
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The DWT of the two functions x(t) and y(t) can be named as 

  , [ ]xW a b n  and   , [ ]yW a b n . The cross-correlation 

between two functions defined in the wavelet domain can, 

therefore, be expressed as 
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3. DWT-BASED AMR METHODOLOGY 
 

The modulation classification technique developed in this 

study is based upon cross-correlating the Discrete Wavelet 

Transformation (DWT) of digitally modulated binary signals 

of unknown modulation type, which is considered to be 

input to a receiver, with pre-defined discrete wavelet-domain 

templates that have been previously stored within the 

receiver. In this study, three signaling schemes have been 

considered: Binary ASK (BASK), Binary FSK (BPSK) and 

Binary PSK (BPSK). The received signals have been 

corrupted by AWGN having SNR values of practical interest 

within the range -5 dB to 10 dB. This wavelet-based AMR 

platform is illustrated in Fig. 2. 

3.1. Templates Selection  
 

The pre-defined templates represent the distinguishing 

features of the modulated signals in the wavelet-domain, 

which are based on the time-domain variations of the 

amplitude, frequency, or phase of the signals. The templates 

are constructed in the WD using the DWT coefficients of 

test signals that correspond to each of the three digital 

modulation schemes considered herein. All the templates are 

constructed using the Daubechies 1 (Haar) wavelet.  
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Fig. 2. Overall system-level description of a radio receiver 

employing an AMR function. 

 

 

Within a particular modulated binary signal, the pre-

defined templates actually represent the transition from 

either binary symbol 0 to binary symbol 1, or 1 to 0. The 

pre-defined templates are based on the transitions in the 

scalogram of the noise-free signal. Therefore, for each of the 

binary modulation schemes, two templates are required in 

order to completely characterize the two possible data state 

transitions. The templates are stored within the receiver for 

later use in the AMR process. 

Figures 3 and 4 illustrate examples of BFSK and 

BASK signals with corresponding scalograms of DWT 

coefficients using the Haar wavelet up to 10 levels. Based on 

observation of the data symbol transition portions of the 

signals shown in the figures, the similarity between the 

noise- free scalograms and the noisy scalograms is obvious, 

especially at the higher levels of resolution. This similarity is 

the most important feature that is exploited in the AMR 

algorithm developed in this work. Later, simulations will be 

conducted to test the similarity using the cross-correlation 

function. It will be shown that the information contained in 

the DWT coefficients at the lower levels of resolution is 

actually sufficient to achieve reliable AMR results. 

The WD templates are described based on symbol 

transitions that occur within a digitally modulated 

communications signal. Two unique features templates can 
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T 
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be extracted from each of the 3 binary digitally modulated 

signals.  The models in the time domain for the templates are 

 
 

Fig. 3 (a): (Top) BASK signal without noise, 10-level wavelet-

domain decomposition using the Haar wavelet; (b): (Bottom) 

BASK signal at 10 dB SNR, 10-level wavelet-domain 

decomposition using the Haar wavelet. 

 

 

 
 

Fig. 4 (a): (Top) BFSK signal without noise, 10-level wavelet-

domain decomposition using the Haar wavelet; (b): (Bottom) 

BFSK signal at 10 dB SNR, 10-level wavelet-domain 

decomposition using the Haar wavelet. 

 

defined according to the following: 
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In (8)-(10), 

iA represents the amplitudes,
if  represents 

the symbol frequencies and
cf denotes the carrier frequency 

of the modulated signals. The time instant it represents the 

locations of the template boundaries within the 

communications signal under consideration. As seen in Fig. 

5, a communications signal having a frame length of 3 

symbols is shown with each of the two possible symbol 

transitions present, i.e., “0” to “1” and “1” to “0.” The two 

unique features templates, 
1T and

2T , can be described based 

on the mathematical models presented in (8)-(10). 
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Fig. 5. Illustration of time-domain unique features templates. 

 

3.2. Algorithm Details 
 

Once the pre-defined templates are generated, the AMR 

process is implemented according to the following algorithm: 

Step 1.) Compute the DWT of the received signal, up to 6 

levels of resolution using the Haar wavelet.  

Step 2.) Cross-correlate the WD signal obtained in Step 1 

with all six of the pre-defined WD templates. This step is 

illustrated more clearly in Fig. 6, wherein the process of the 

sliding cross-correlation operation between a template and a 

communications signal is illustrated. In this process, the 

template is cross-correlated with the first signal segment. 
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Subsequently, the cross-correlation values between the 

signal and template within each data symbol section of the 

signal are computed. A signal segment is shown in Fig. 6 

representing a data symbol period within the received signal. 

The template is then slid so as to be aligned with the next 

signal segment, and the two are cross-correlated. The 

process is continued until the template has been cross-

correlated with all segments of the signal. 

Step 3.) Compare the resulting cross-correlation values of 

the two BASK templates with the signal specifically at 

multiples of each baseband symbol period. Select the larger 

of the two values in each comparison, and in this manner 

generate a set of “time-and-merged” cross-correlation results 

for the two BASK templates. This operation is depicted in 

Fig. 7. 

 

Communications 

signal

Template

 
 

Fig. 6. Illustration of the sliding cross-correlation process between 

a template and a communications signal. 
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Fig. 7 Example of a “time-and-merged” operation in the WD AMR 

process. 
 

Step 4.) Repeat Step 3 using the BFSK templates, and then 

again for the BPSK templates. 

Step 5.) Compare each data element in the three sets of 

“time-and-merged” cross-correlation values. Select the 

largest value and record the template type to which the value 

belongs, i.e., whether it corresponds to BASK, BFSK or 

BPSK. 

Step 6.) Declare the specific modulation type of the received 

signal to be that of the same type as the template that was 

selected most often in Step 5, i.e., select by a majority vote. 

The procedural block diagram depicted in Fig. 8 

illustrates Steps 1 through 6 of the algorithm for the AMR 

process. 

Detailed description of Step 3: An important procedure 

in the WD AMR process is the “time-and-merged” operation 

described in Step 3.  For the example illustrated in Fig. 7, a 

BASK test signal having a frame length of 8 symbols is 

cross-correlated with the two BASK unique features 

templates at consecutive data symbol locations. Then, the 

cross-correlation values obtained using both templates at 

each symbol period are compared.  The cross-correlation 

result having the largest value is selected. These resulting 

sets of data are termed the “time-and-merged” cross-

correlation values. These values are used in the WD AMR 

process for identification of the unknown modulation 

scheme of a received signal. In Fig. 7, L denotes a small 

cross-correlation value, while H represents a large cross-

correlation value. A more complete example of the 

recognition procedure for a BASK signal is illustrated in Fig. 

9. In the figure, the top row is representative of a noisy 

BASK signal having a random data bit sequence, which is 

input to a communications receiver that is initially unaware 

of the actual modulation type. The received BASK signal is 

a noisy digitally modulated signal that is transformed into 

the discrete wavelet-domain using the Haar wavelet. Hence, 

in actuality, the BASK signal in the top row of Fig. 9 is a  
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Fig. 8. System-level block diagram of the wavelet-based AMR 

processor. 

 

WD scalogram. Next, this transformed received signal is 

cross-correlated with 6 unique features templates (2 

templates for each of the 3 binary modulation schemes). 

Consequently, 3 sets of “time-and-merged” cross-correlation 

results are generated. In Fig. 9, the following notations are 

used: 

 

H      High cross-correlation value 

L Low cross-correlation value 

MA Intermediate cross-correlation value within the 

BASK template dataset 

DWT 

0 1 0 1 1 
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MF Intermediate cross-correlation value within the 

BFSK template dataset 

MP Intermediate cross-correlation value within the 

BPSK template dataset. 

The “time-and-merged” results for the example are 

highlighted in the box shown in Fig. 9. It is the input to the 

following decision processor. For each symbol period, the 

three “time-and-merged” data results are compared. The 

template having the best match to a candidate modulation 

type is identified based on the largest value contained in the 

“time-and-merged” data. The classification of the unknown 

modulation scheme is then accomplished via a majority vote 

of all the element-wise template identifications previously 

made. In the example of Fig. 9, BASK templates are 

identified as being present in the received signal most often. 

Therefore, the modulation scheme employed by the received 

test signal is recognized to be that of BASK. 
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Fig. 9. Example of WD AMR process using the unique features 

templates. 

 

4. SIMULATION EXPERIMENTS AND RESULTS 

 

All of the binary digitally modulated test signals used in 

this study have been corrupted by zero-mean AWGN during 

transmission to produce received signals with SNR values in 

the range of -5 dB to 10 dB. The rates of correct 

classification produced by the WD AMR algorithm based on 

the unique features templates have been obtained using 

20,000 Monte Carlo trials, where each simulation 

experiment employs 50 bits per frame. Each test signal used 

in the 20,000 trials randomly employs one among the BASK, 

BFSK or BPSK modulation schemes. The signals are 

oversampled by a factor of sixteen over the Nyquist rate 

corresponding to the carrier frequency. Oversampling is 

used because more signal content can be represented in the 

WD scalogram, which in turn enhances the WD AMR 

process. Perfect symbol timing, with no timing offset, is also 

assumed throughout this work.  

All simulations have been performed using MATLAB. 

The carrier in each signal segment, representing a baseband 

data symbol, is composed of 128 samples per symbol. Due 

to the number of samples contained in a symbol, the 

maximum template length is 128 samples. Then the possible 

template lengths are 128, 64, 32, 16, 8, 4 and 2 samples. The 

length of the templates representing the WD templates, 

however, cannot be too short due to the loss of resolution in 

the WD scalogram. The loss of resolution directly affects the 

performance of the WD AMR process. A graphical 

representation of the sliding process with different template 

lengths is shown in Fig. 10. For the sake of illustration, only 

templates of size 128, 64 and 32 samples are used.  

 

Templates with 

different 

lengths

Communications 

signal

32:

64:

128:

Fig. 10. Graphical representation of the cross-correlation operation 

using different template lengths. 

 

In the simulations conducted in this study, the length of 

the templates is chosen to be 64 samples so as to achieve a 

balance, or tradeoff, between complexity and resolution. The 

results of the simulations are provided in Tables 1-4, which 

contain the rates of correct classification for signals with 

unknown modulation schemes corrupted by AWGN 

resulting in SNR values of 10 dB, 5 dB, 0 dB and -5 dB. 
 

TABLE 1 RATES OF CORRECT CLASSIFICATION FOR SNR = 10 dB 
     

  SIGNAL CLASSIFIED AS (%) 

  BASK BFSK BPSK 

TX 

SIGNAL 

BASK 100 0 0 

BFSK 1.53 98.37 0 

BPSK 0 0 100 
     

 

 
TABLE 2 RATES OF CORRECT CLASSIFICATION FOR SNR = 5 dB 

     

  SIGNAL CLASSIFIED AS (%) 

  BASK BFSK BPSK 

TX BASK 100 0 0 

0 1 0 1 1 
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SIGNAL BFSK 2.57 96.15 1.28 

BPSK 2.06 1.10 96.84 
     

 
TABLE 3  RATES OF CORRECT CLASSIFICATION FOR SNR = 0 dB 

     

  SIGNAL CLASSIFIED AS (%) 

  BASK BFSK BPSK 

TX 

SIGNAL 

BASK 100 0 0 

BFSK 2.96 95 2.04 

BPSK 2.93 1.46 95.61 
     

 

 
TABLE 4 RATES OF CORRECT CLASSIFICATION FOR SNR = -5 dB 

     

  SIGNAL CLASSIFIED AS (%) 

  BASK BFSK BPSK 

TX 

SIGNAL 

BASK 100 0 0 

BFSK 3.98 94.32 1.7 

BPSK 3.42 1.71 94.87 
     

 

 

5. COMPARISON OF RESULTS 

 

Some prior studies found in the literature that have used 

both WD-based and non-WD-based AMR methods have 

been surveyed and compared with the results obtained in this 

study. The comparisons are presented in Tables 5-10. 

Specifically, Tables 5, 6 and 7 show the comparison 

between the results of this work and existing non-WD-based 

and CWT-based AMR methods. Tables 8, 9 and 10 compare 

previous DWT-based AMR results to the results of the 

DWT-based AMR algorithm developed in this work. It must 

be noted that a direct comparison of the different AMR 

methodologies is not possible due to the fact that the prior 

works do not necessarily use the same general a priori 

assumptions, such as SNR values, number of symbols per 

transmission, etc. 

The values in Tables 5-7 were obtained from existing 

CWT-based and non-WD-based AMR techniques. More 

specifically, works [4], [8], [23] employ CWT-based 

techniques, while works [3], [18], [19], [20], [21], [22] use 

non-WD-based methods. Upon careful comparison, it has 

been found that the performance of the DWT-based AMR 

algorithm developed in this work is generally better than 

those obtained using other existing non-DWT-based AMR 

techniques with respect to two significant improvements. 

The first improvement is that of the performance 

enhancement at an SNR of -5 dB for BFSK and BPSK 

signals. The CWT-based AMR can only achieve a rate of 

correct classification of 54% [23], while the DWT-based 

AMR can identify the correct modulation with a 97% 

success rate.  

The second improvement is the reduction of the 

computational complexity due to the differences between the 

nature of the CWT and DWT.  The overall computational 

 

 
TABLE 5  

SURVEY OF BASK CLASSIFICATION IN THE NON-DWT-BASED LITERATURE 

AMR method 

devised by 

 Correct classification 

at highest SNR (%) 

Correct 

classification at 

lowest SNR (%) 

Hossen, et al. [18] 97.5 at 3 dB 82.5 at -5 dB 

Azzouz, et al. [19] 100 at 20 dB 98.25 at 10 dB 

Lopatka, et al. [20] 100 at 30 dB ~92 at 0 dB 

Yang, et al. [21] - 97.5 at 10 dB 

This work 100 at 10 dB 100 at -5 dB 

 
TABLE 6  

SURVEY OF BPSK CLASSIFICATION IN THE NON-DWT-BASED LITERATURE 

AMR method 

devised by 

Correct classification 

at highest SNR (%) 

Correct 

classification at 

lowest SNR (%) 

Hossen, et al. [18] 100 at 5 dB 87.5 at 3 dB 

Azzouz, et al. [19] 90.75 at 20dB 96.25 at 10 dB 

Dobre, et al. [22] - 100 at 2 dB 

Ho, et al. [4] - 98 at 13 dB 

Jin, et al. [8] 100 at 13 dB 99.5 at 8 dB 

Ou, et al. [23] 100 at 20 dB ~54 at -5 dB 

This work 100 at 10 dB 95 at -5 dB 

 
TABLE 7  

SURVEY OF BFSK CLASSIFICATION IN THE NON-DWT-BASED LITERATURE 

AMR method  

devised by 

Correct classification 

at highest SNR (%) 

Correct 

classification at 

lowest SNR (%) 

Hossen, et al. [18] 100 at 5 dB 75 at 3 dB 

Azzouz, et al. [19] 100 at 20 dB 91 at 10 dB 

Ho, et al. [3] - 100 at 13 dB 

Jin, et al. [8] 100 at 13 dB 95.3 at 8 dB 

Ou, et al. [23] 100 at 20 dB ~54 at -5 dB 

This work 98 at 10 dB 97 at -5 dB 

 

complexity consists of: Generation of templates; 

Transformation of the received signal into the WD; Cross-

correlation operations; and, Decision processor steps. For 

example, consider the case where a test signal has a length 

of 30 bits with 128 samples for each bit, and the template 

size is set at 64 samples. For the CWT-based AMR process, 

the size of each WD template would be a 128x64 matrix. 

The cross-correlation operation is based on the same size as 

well. Hence, the computational cost of the cross-correlation 

processing operations plus the computational cost of the 
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Decision Algorithms will result in the total complexity for  

the CWT-based AMR to be O(128*64). However, in the 

case of the DWT, because the resolution scale is taken to be 

a power of 2, level 7 is equivalent to the level 128 in the 

CWT. Now, the size of one DWT-based template is a matrix 

of size only 7x64. For similar AMR algorithm operations, 

the total computational complexity for DWT-based AMR is 

O(7*64). It is additionally observed that the matrix of DWT-

based templates is a sparse matrix because of the down 

sampling operation at each level of resolution, which further 

makes the DWT-based AMR a computational efficiency 

process. 

 
TABLE 8  

SURVEY OF BASK CLASSIFICATION IN THE DWT-BASED LITERATURE 

AMR method  

devised by 

 Correct classification 

at highest SNR (%) 

Correct 

classification at 

lowest SNR (%) 

Effrina, et al. [24] - - 

Prakasam, et al. [10] - - 

This work 100 at 10 dB 100 at -5 dB 

 

 
TABLE 9  

SURVEY OF BPSK CLASSIFICATION IN THE DWT-BASED LITERATURE 

AMR method 

devised by 

Correct classification 

at highest SNR (%) 

Correct 

classification at 

lowest SNR (%) 

Effrina, et al. [24] 100 at 25 dB 93at 10 dB 

Prakasam, et al. [10] 98.6 at 3 dB - 

This work 100 at 10 dB 95 at -5 dB 

 

 
TABLE 10  

SURVEY OF BFSK CLASSIFICATION IN THE DWT-BASED LITERATURE 

AMR method 

devised by 

Correct classification 

at highest SNR (%) 

Correct 

classification at 

lowest SNR (%) 

Effrina, et al. [24] 99 at 25 dB 98 at 10 dB 

Prakasam, et al.[10] 100 at 3 dB - 

This work 98 at 10 dB 97 at -5 dB 

 

 E. Avci, et al. [25], report mean correct recognition 

rates for digital modulation recognition of 96.51% and 

90.24% when using DWNN and DWANFIS intelligent 

systems, respectively.  

Also, from the comparison of results obtained with 

existing DWT-based AMR methods in Tables 8-10, 

generally, it is once again found that the DWT-based AMR 

algorithm developed in this work compares favorably.  The 

range of the SNR considered in this paper is wider and 

centered in a more practical range of interest for radio 

receivers. 

 

6. CONCLUSIONS 

 

In this paper, it has been demonstrated that with the use of 

the pattern recognition methodology of template matching, 

along with appropriately defined WD templates, an effective 

AMR process can be developed operating within the WD. It 

has been demonstrated that the AMR process can correctly 

classify modulation schemes with very high reliability even 

for low values of SNR. At SNR = -5 dB, the correct rates of 

classification are achieved at a rate of 100% for BASK 

signals, 94.9% for BPSK signals, and above 97% for BFSK. 

In this paper, it has been systematically established that, 

based on the AMR methodology devised in this study, and 

from the associated results, that an effective AMR process 

for binary digital modulation schemes can be implemented 

in the WD. While one of the immediate benefits gained from 

this study would serve to advance the state-of-the-art in 

communications receiver design, the near-term consequence 

is that of enabling adaptive and agile transceivers that have 

the potential to efficiently interoperate with a variety of 

communications standards that use different modulation 

types. Applications of such transceivers are present in both 

the military and civilian sectors, especially in the context of 

software defined radios and cognitive radio systems.  

 

7. FUTURE WORK 
 

A question readily arises as to whether the DWT-based 

AMR process can be extended to enable the classification of 

M-ary modulation schemes by using similar methodologies.   

 
TABLE 11 

Number of unique feature templates needed for different modulation 

schemes. 

Modulation Scheme 
Number of Unique Features 

Templates Needed 

BASK 2 

4-ASK 16 

BFSK 2 

4-FSK 16 

BPSK 2 

QPSK 16 

8-PSK 64 

4-QAM 16 

16-QAM 256 

64-QAM 4096 
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256-QAM 65536 

 

The answer is yes, but not all that efficiently.  This is due to 

the large number of unique feature templates that are 

required in the AMR algorithm. The higher-order 

modulation schemes contain more unique features, caused 

by an increase in the number of possible symbol transitions 

that exist, when compared to lower-order modulation 

schemes. Table 11 shows the number of unique features 

templates that must be extracted from different modulation 

schemes for use in the DWT-based AMR process. 

From Table 11, it is easily seen that as the order of the 

digital modulation scheme increases, the number of unique 

features templates required for the WD AMR process also 

increases rapidly.   

Therefore, it can be concluded that the computational 

effort for classifying the correct type of modulation scheme 

will also be significantly increased. Due to this observation, 

the unique features templates is best suited for developing a 

WD AMR process dedicated to classifying binary digitally 

modulated communications signals. Hence, a new DWT-

based AMR algorithm must be designed to classify M-ary 

signals. 

 Another aspect of ongoing work is that of determining 

the optimal wavelet to use in the development of the WD 

templates employed in the AMR algorithm.  It is expected 

that the rates of correct classification can be further 

enhanced by the use of wavelets that are well-matched to the 

time-domain structures of the digitally modulated 

communications signals. 
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